Multi-Agent Systems¶
QilbeeDB excels at coordinating multiple AI agents with separate memory spaces while enabling shared knowledge graphs.
Separate Agent Memories¶
from qilbeedb import QilbeeDB
from qilbeedb.memory import Episode
db = QilbeeDB("http://localhost:7474")
# Each agent has isolated memory
sales_agent = db.agent_memory('sales_agent')
support_agent = db.agent_memory('support_agent')
# Sales interactions
sales_agent.store_episode(Episode.conversation(
'sales_agent',
'Tell me about pricing',
'Our plans start at $99/month...'
))
# Support interactions
support_agent.store_episode(Episode.conversation(
'support_agent',
'I need technical help',
'Let me assist you with that...'
))
Shared Knowledge¶
# Shared knowledge graph accessible to all agents
shared_kb = db.graph('company_knowledge')
product = shared_kb.create_node(['Product'], {
'name': 'Enterprise Plan',
'price': 999
})
# All agents can query shared knowledge
results = shared_kb.query("""
MATCH (p:Product)
WHERE p.name CONTAINS 'Enterprise'
RETURN p.name, p.price
""")
Agent Coordination¶
# Agents can reference each other's work
handoff = Episode.action(
'support_agent',
'Escalated to sales for upgrade discussion',
'Customer interested in Enterprise features'
)
support_agent.store_episode(handoff)
Next Steps¶
- Read AI Agents use case
- Explore Agent Memory
- Learn the Python SDK